131k views
0 votes
Find the exact values of sin(θ/2), cos(θ/2), and tan(θ/2) for the given conditions.

sec θ =
5
4
; 0° < θ < 90°

sin(θ/2) =
cos(θ/2) =
tan(θ/2) =

User Cheshire
by
8.1k points

1 Answer

4 votes

\bf sec(\theta)=\cfrac{hypotenuse}{adjacent}\qquad sec(\theta)=\cfrac{5}{4}\cfrac{\leftarrow hypotenuse=c}{adjacent=a} \\\\\\ \textit{so, let's find the opposite side

well, the pythagorean theorem, gives us the +/- versions, so, which one is it?

well, our angle is at 0° < θ < 90°, meaning the 1st quadrant, and there, the opposite side, or "y" or "b", is positive, so is b = 9 then

now


\bf \textit{Half-Angle Identities} \\ \quad \\ sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1-cos({{ \theta}})}{2}}\qquad cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1+cos({{ \theta}})}{2}} \\ \quad \\\\ tan\left(\cfrac{{{ \theta}}}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos({{ \theta}})}{1+cos({{ \theta}})}} \\ \quad \\ \boxed{\cfrac{sin({{ \theta}})}{1+cos({{ \theta}})}} \\ \quad \\ \cfrac{1-cos({{ \theta}})}{sin({{ \theta}})} \end{cases}

thus


\bf sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1-sin({{ \theta}})}{2}}\implies sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1-(4)/(5)}{2}} \\\\\\ sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{(1)/(5)}{2}}\implies sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1}{10}}
------------------------------------------------------------------------------------------


\bf cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1+cos({{ \theta}})}{2}}\implies cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1+(4)/(5)}{2}} \\\\\\ cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{(9)/(5)}{2}}\implies cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{9}{10}}

------------------------------------------------------------------------------------------


\bf tan\left(\cfrac{{{ \theta}}}{2}\right)=\cfrac{sin({{ \theta}})}{1+cos({{ \theta}})}\implies tan\left(\cfrac{{{ \theta}}}{2}\right)=\cfrac{(9)/(5)}{1+(4)/(5)}\implies tan\left(\cfrac{{{ \theta}}}{2}\right)=\cfrac{(9)/(5)}{(9)/(5)} \\\\\\ tan\left(\cfrac{{{ \theta}}}{2}\right)=1
User Riku
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories