132k views
1 vote
For what value of n does 216^n-2/(1/36)^3n= 216

For what value of n does 216^n-2/(1/36)^3n= 216-example-1
User LMaker
by
5.7k points

2 Answers

5 votes

Answer:

Option (d) is correct.

Explanation:

User Vrankela
by
5.9k points
5 votes

Answer:

Option (d) is correct.

for n = 1
(216^(n-2))/(((1)/(36))^(3n) )=216 holds.

Explanation:

Given expression
(216^(n-2))/(((1)/(36))^(3n) )=216

We have to find the value of n for which the given expression
(216^(n-2))/(((1)/(36))^(3n) )=216

Consider the given expression
(216^(n-2))/(((1)/(36))^(3n) )=216

Apply exponent rule
(1)/(a^b)=a^(-b)


(1)/(\left((1)/(36)\right)^(3n))=\left((1)/(36)\right)^(-3n)

We get,


216^(n-2)\left((1)/(36)\right)^(-3n)=216

Convert
216^(n-2) to base 6, we have
216^(n-2)=\left(6^3\right)^(n-2)

Thus, the expression becomes,


\left(6^3\right)^(n-2)\left(6^(-2)\right)^(-3n)=216

Apply exponent rule ,
\left(a^b\right)^c=a^(bc)

We get,


6^(3\left(n-2\right))\cdot \:6^(-2\left(-3n\right))=6^(3\left(n-2\right)-2\left(-3n\right))


6^(3\left(n-2\right)-2\left(-3n\right))=216


\mathrm{If\:}a^(f\left(x\right))=a^(g\left(x\right))\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)


3\left(n-2\right)-2\left(-3n\right)=3

Simplify for n , we have,

n = 1

Thus for n = 1
(216^(n-2))/(((1)/(36))^(3n) )=216 holds.

User David Caldwell
by
5.4k points