For us to be able to determine the original coordinates. Take note of the translation given:
(x,y) -› (x - 3,y + 2)
For P,
P (x, y) → P'(x - 3,y + 2) = P'(0, 0)
x - 3 = 0
x = 3
y + 2 = 0
y = -2
Therefore, the coordinates of point P is: P(3, -2)
For Q,
Q (x, y) → Q'(x - 3,y + 2) = Q' (-3, 1)
x - 3 = -3
x = -3 + 3
x = 0
y + 2 = 1
y = 1 - 2
y = -1
Therefore, the coordinates of point Q is: Q(0, -1)
For R,
R (x, y) → R'(x - 3,y + 2) = R' (-7, -7)
x - 3 = -7
x = -7 + 3
x = -4
y + 2 = -7
y = -7 - 2
y = -9
Therefore, the coordinates of point R is: R(-4,-9)