62.0k views
2 votes
Evaluate the surface integral s f · ds for the given vector field f and the oriented surface s. in other words, find the flux of f across s. for closed surfaces, use the positive (outward orientation. f(x, y, z = x i ? z j y k s is the part of the sphere x2 y2 z2 = 16 in the first octant, with orientation toward the origin

User Tacone
by
8.6k points

1 Answer

3 votes
I'm reading the vector field as


\mathbf F(x,y,z)=x\,\mathbf i-z\,\mathbf j+y\,\mathbf k

The surface
S can be parameterized by


\mathbf s(\theta,\varphi)=4\cos\theta\sin\varphi\,\mathbf i+4\sin\theta\sin\varphi\,\mathbf j+4\cos\varphi\,\mathbf k

with
0\le\theta\le\frac\pi2 and
0\le\varphi\le\frac\pi2.

Then the surface integral is given by


\displaystyle\iint_S(\mathbf F\cdot\mathbf n)\,\mathrm dS=\iint_S\left(\mathbf F(\mathbf s(\theta,\varphi))\cdot(\mathbf s_\theta*\mathbf s_\varphi)\right)\,\mathrm dS

\displaystyle-64\int_(\theta=0)^(\theta=\pi/2)\int_(\varphi=0)^(\varphi=\pi/2)(2\cos\varphi\sin^2\varphi\sin\theta+\cos^2\theta\sin^3\varphi))\,\mathrm d\varphi\,\mathrm d\theta=-\frac{32(\pi+4)}3
User Pratibha
by
8.5k points