224k views
4 votes
Find the distance traveled by a particle with position (x, y as t varies in the given time interval. x = 3?sin2 t, y = 3?cos2 t, 0 ? t ? 4?

User Capone
by
5.3k points

1 Answer

3 votes
Assuming the particle's position is given by


\begin{cases}x(t)=3-\sin2t\\y(t)=3-\cos2t\\0\le t\le4\end{cases}

then the distance traveled over the interval is


\displaystyle\int_(t=0)^(t=4)\sqrt{\left((\mathrm dx(t))/(\mathrm dt)\right)^2+\left((\mathrm dy(t))/(\mathrm dt)\right)^2}\,\mathrm dt

=\displaystyle\int_0^4√((-2\cos2t)^2+(2\sin2t)^2)\,\mathrm dt

=\displaystyle\int_0^4√(4\cos^22t+4\sin^22t)\,\mathrm dt

=\displaystyle2\int_0^4\mathrm dt

=2(4-0)=8
User Quirky Purple
by
6.3k points