228k views
5 votes
Find the area of the surface. the part of the surface z = xy that lies within the cylinder x2 y2 = 25.

1 Answer

5 votes
Parameterize the intersection by


\mathbf r(r,\theta)=(r\cos\theta,r\sin\theta,r^2\cos\theta\sin\theta)

with
0\le r\le5 and
0\le\theta\le2\pi. Then the area is given by the surface integral


\displaystyle\int_(r=0)^(r=5)\int_(\theta=0)^(\theta=2\pi)\left\|\mathbf r_r*\mathbf r_\theta\right\|\,\mathrm d\theta\,\mathrm dr

\displaystyle\int_0^(2\pi)\int_0^5r√(1+r^2)\,\mathrm dr\,\mathrm d\theta

\displaystyle\pi\int_1^(26)\sqrt s\,\mathrm ds

\displaystyle\frac{2\pi}3s^(3/2)\bigg|_(s=1)^(s=26)=\frac{2\pi(26^(3/2)-1)}3
User Boluc Papuccuoglu
by
8.4k points