20.3k views
3 votes
Harmonic mean if a number h such that (h-a)/(b-h)=a/b Prove h is H(a,b) iff satisfies either relation a. (1/a)-(1/h) = (1/h) - (1/b) b. h = (2ab)/(a+b)

User VictorBian
by
8.4k points

2 Answers

4 votes

Answer: just delete my answer

Explanation:

User Jan Krakora
by
8.6k points
4 votes
a.


\displaystyle\frac1a-\frac1h=\frac1h-\frac1b

\implies\displaystyle(h-a)/(ah)=(b-h)/(bh)

\implies\displaystyle(h-a)/(b-h)=(ah)/(bh)

\implies\displaystyle(h-a)/(b-h)=\frac ab

b.


\displaystyle h=(2ab)/(a+b)

\displaystyle\implies(h-a)/(b-h)=((2ab)/(a+b)-a)/(b-(2ab)/(a+b))

\displaystyle\implies(h-a)/(b-h)=(2ab-a(a+b))/(b(a+b)-2ab)

\displaystyle\implies(h-a)/(b-h)=(ab-a^2)/(b^2-ab)

\displaystyle\implies(h-a)/(b-h)=(a(b-a))/(b(b-a))

\displaystyle\implies(h-a)/(b-h)=\frac ab

The other direction can be proved by following the manipulations in the reverse order.
User Morteza Mashayekhi
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories