116k views
1 vote
Find the partial fraction decomposition of the rational expression with prime quadratic factors in the denominator


(5x^4-7x^3-12x^2+6x+21)/((x-3)(x^2-2)^2)

1 Answer

7 votes

(5x^4-7x^3-12x^2+6x+21)/((x-3)(x^2-2)^2)=(a_1)/(x-3)+(a_2x+a_3)/(x^2-2)+(a_4x+a_5)/((x^2-2)^2)

\implies 5x^4-7x^3-12x^2+6x+21=a_1(x^2-2)^2+(a_2x+a_3)(x-3)(x^2-2)+(a_4x+a_5)(x-3)

When
x=3, you're left with


147=49a_1\implies a_1=(147)/(49)=3

When
x=\sqrt2 or
x=-\sqrt2, you're left with


\begin{cases}17-8\sqrt2=(\sqrt2a_4+a_5)(\sqrt2-3)&\text{for }x=\sqrt2\\17+8\sqrt2=(-\sqrt2a_4+a_5)(-\sqrt2-3)\end{cases}\implies\begin{cases}-5+\sqrt2=\sqrt2a_4+a_5\\-5-\sqrt2=-\sqrt2a_4+a_5\end{cases}

Adding the two equations together gives
-10=2a_5, or
a_5=-5. Subtracting them gives
2\sqrt2=2\sqrt2a_4,
a_4=1.

Now, you have


5x^4-7x^3-12x^2+6x+21=3(x^2-2)^2+(a_2x+a_3)(x-3)(x^2-2)+(x-5)(x-3)

5x^4-7x^3-12x^2+6x+21=3x^4-11x^2-8x+27+(a_2x+a_3)(x-3)(x^2-2)

2x^4-7x^3-x^2+14x-6=(a_2x+a_3)(x-3)(x^2-2)

By just examining the leading and lagging (first and last) terms that would be obtained by expanding the right side, and matching these with the terms on the left side, you would see that
a_2x^4=2x^4 and
a_3(-3)(-2)=6a_3=-6. These alone tell you that you must have
a_2=2 and
a_3=-1.

So the partial fraction decomposition is


\frac3{x-3}+(2x-1)/(x^2-2)+(x-5)/((x^2-2)^2)
User Mbask
by
9.0k points