208k views
4 votes
If cosh x = 13 5 and x > 0, find the values of the other hyperbolic functions at x.

1 Answer

0 votes
Recall that


\cosh^2x-\sinh^2x=1\implies \cosh x=\pm√(1+\sinh^2x)

You're given that
\cosh x=\frac{13}5>0, so omit the negative root. Then


\frac{13}5=√(1+\sinh^2x)\implies\sinh^2x=(144)/(25)\implies\sinh x=\pm\frac{12}5

Because
x>0, you have
\sinh x>0 too, so omit the negative root again. Then
\sinh x=\frac{12}5.

Now,


\mbox{sech }x=\frac1{\cosh x}=\frac5{13}

\mbox{csch }x=\frac1{\sinh x}=\frac5{12}

\tanh x=(\sinh x)/(\cosh x)=\frac{\frac{12}5}{\frac{13}5}=(12)/(13)

\coth x=\frac1{\tanh x}=(13)/(12)
User Prometheus
by
6.5k points