Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Terms/Coefficients
- Factoring
- Functions
- Function Notation
- Exponential Rule [Rewrite]:

Calculus
Derivatives
Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/s293bflxm18bvcg1l3en3cuunq0lisacx0.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/7yhe7a7935zygn67ltma0pqtm7b19c7cix.png)
Step-by-step explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Chain Rule:
![\displaystyle f'(x) = (d)/(dx)[(x^2 - 2x - 1)^\bigg{(2)/(3)}] \cdot (d)/(dx)[(x^2 - 2x - 1)]](https://img.qammunity.org/2018/formulas/advanced-placement-ap/high-school/nrw9hs0294panuvbtdczwocjqhrml80bbu.png)
- Basic Power Rule {Derivative Property - Subtraction]:

- Simplify:

- Rewrite [Exponential Rule - Rewrite]:

- Factor:

Step 3: Evaluate
- Substitute in x [Derivative]:
![\displaystyle f'(0) = \frac{4(0 - 1)}{3[0^2 - 2(0) - 1]^\bigg{(1)/(3)}}](https://img.qammunity.org/2018/formulas/advanced-placement-ap/high-school/tqhapm8cecifwoshk9o4ny40ky2oj2kfzo.png)
- [Order of Operations] Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e