235k views
5 votes
Solve the initial value problem using Laplace transforms.

y''-7y'+10y=9 cos(t)+7sin(t)

y(0)=5, y'(0)=-4

User Meguli
by
8.1k points

1 Answer

4 votes
Let
\mathcal L_s\{y(t)\}=Y(s) denote the Laplace transform of
y(t). Recall that


\mathcal L_s\{y''(t)\}=s^2Y(s)-sy(0)-y'(0)

\mathcal L_s\{y'(t)\}=sY(s)-y(0)

\mathcal L_s\{\cos t\}=\frac s{s^2+1}

\mathcal L_s\{\sin t\}=\frac1{s^2+1}

Taking the transform of both sides yields


\bigg(s^2Y(s)-5s+4\bigg)-7\bigg(sY(s)-5\bigg)+10Y(s)=(9s+7)/(s^2+1)

and solving for
Y(s) gives


Y(s)=((9s+7)/(s^2+1)+5s-39)/(s^2-7s+10)

Y(s)=(5s^3-39s^2+14s-32)/((s^2+1)(s^2-7s+10))

Y(s)=(5s^3-39s^2+14s-32)/((s^2+1)(s-5)(s-2))

Y(s)=-\frac4{s-5}+\frac8{s-2}+\frac s{s^2+1}

Take the inverse transform and you're done:


y(t)=\mathcal L^(-1)_t\{Y(s)\}=-4e^(5t)+8e^(2t)+\cos t
User Giefaan
by
9.0k points