385,683 views
45 votes
45 votes
Graph the polygon and it’s image after a dilation centered C with scale factor k

Graph the polygon and it’s image after a dilation centered C with scale factor k-example-1
User Bladefist
by
3.0k points

1 Answer

15 votes
15 votes
Step-by-step explanation

Graphing the polygon

We plot and join the given ordered pairs.

Graphing the image of the polygon after the dilation

The formula of dilation when it is not centred at the origin is:


\begin{gathered} (x,y)\rightarrow(k(x-a)+a,k(y-b)+b) \\ \text{ Where} \\ k\text{ is the scale factor} \\ (a,b)\text{ is the center of the dilation} \end{gathered}

Then, we can find the coordinates of the image:


\begin{gathered} k=(2)/(3) \\ (a,b)=C(-2,4) \\ T(7,1)\operatorname{\rightarrow}T^(\prime)((2)/(3)(7-(-2))-2,(2)/(3)(1-4)+4) \\ T(7,1)\operatorname{\rightarrow}T^(\prime)((2)/(3)(7+2)-2,(2)/(3)(-3)+4) \\ T(7,1)\operatorname{\rightarrow}T^(\prime)((2)/(3)(9)-2,(2)/(3)(-3)+4) \\ T(7,1)\operatorname{\rightarrow}T^(\prime)(6-2,-2+4) \\ T(7,1)\operatorname{\rightarrow}T^(\prime)(4,2) \end{gathered}
\begin{gathered} k=(2)/(3) \\ (a,b)=C(-2,4) \\ U(4,4)\operatorname{\rightarrow}U^(\prime)((2)/(3)(4-(-2))-2,(2)/(3)(4-4)+4) \\ U(4,4)\operatorname{\rightarrow}U^(\prime)((2)/(3)(4+2)-2,(2)/(3)(4-4)+4) \\ U(4,4)\operatorname{\rightarrow}U^(\prime)((2)/(3)(6)-2,(2)/(3)(0)+4) \\ U(4,4)\operatorname{\rightarrow}U^(\prime)(4-2,0+4) \\ U(4,4)\operatorname{\rightarrow}U^(\prime)(2,4) \end{gathered}


\begin{gathered} k=(2)/(3) \\ (a,b)=C(-2,4) \\ V(1,13)\operatorname{\rightarrow}V^(\prime)((2)/(3)(1-(-2))-2,(2)/(3)(13-4)+4) \\ V(1,13)\operatorname{\rightarrow}V^(\prime)((2)/(3)(1+2)-2,(2)/(3)(13-4)+4) \\ V(1,13)\operatorname{\rightarrow}V^(\prime)((2)/(3)(3)-2,(2)/(3)(9)+4) \\ V(1,13)\operatorname{\rightarrow}V^(\prime)(2-2,6+4) \\ V(1,13)\operatorname{\rightarrow}V^(\prime)(0,10) \end{gathered}

Graph the polygon and it’s image after a dilation centered C with scale factor k-example-1
User Gilson PJ
by
2.7k points