522,391 views
13 votes
13 votes
Which of the following is equivalent to sqrt (54a^3)/sqrt (2a) ?

Which of the following is equivalent to sqrt (54a^3)/sqrt (2a) ?-example-1
User Ferdi
by
2.8k points

1 Answer

14 votes
14 votes

The given expression is


(√(54a^3))/(√(2a))

Apply radical rule:


\begin{gathered} (√(a))/(√(b))=\sqrt{(a)/(b)},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0 \\ (√(54a^3))/(√(2a))=\sqrt{(54a^3)/(2a)} \end{gathered}

Cancel the common factor (2a), we will have


=√(27a^2)

Apply radical rule:


\begin{gathered} √(ab)=√(a)√(b),\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0 \\ √(27a^2)=√(27)√(a^2) \\ √(a^2)=a,\:\quad \mathrm{\:assuming\:}a\ge 0 \\ =√(27)a \end{gathered}

Then


√(27)a=3√(3)a=3a√(3)

Hence, the answer is


3a√(3)\text{ \lparen Option 2\rparen}

User David Wang
by
2.5k points