24.1k views
0 votes
Solve the triangle A=52degrees, b=10, c=7

2 Answers

2 votes
Let the triangle is ABC


a^2=b^2+c^2-2bc*cos(A)=100+49-(2*10*7)(cos52)\\a=7.29


c^2=b^2+a^2-2ab*cos(C)\\ 49=100+53.16-(2*10*7.29)(cos(C))\\~\\C=49.35

A+B+C =180
52+B+49.35=180

B=78.65
User Alergy
by
7.5k points
3 votes

Answer:

Explanation:

Given that a triangle has two sides, A= 52 deg, b=10, c=7

Use cosine law to get


a = √(b^2 + c^2 - 2bccos(A))  = 7.92511


\∠B = arccos( (a^2 + c^2 - b^2)/(2ac) = 1.46418 rad = 83.891 degrees= 83°53'28

User MichaelChan
by
8.3k points