27.1k views
3 votes
Integrate f(x,y,z)=x over the region in the first octant (x>0, y>0, z>0) above z=y^2 and below z=8-2x^2-y^2

1 Answer

4 votes

\begin{cases}z=y^2\\z=8-2x^2-y^2\end{cases}\implies y^2=8-2x^2-y^2\iff y^2+x^2=4

which means the intersection of the parabolic cylinder
z=y^2 and paraboloid
z=8-2x^2-y^2 is a circle of radius 2 centered at the origin.

So the integral can be represented in Cartesian coordinates by


\displaystyle\iiint_D x\,\mathrm dV=\int_(-2)^2\int_(-√(4-x^2))^(√(4-x^2))\int_(y^2)^(8-2x^2-y^2)x\,\mathrm dz\,\mathrm dy\,\mathrm dx

where
D is the region between the two surfaces.

Converting to cylindrical coordinates will make this slightly easier to compute.


\begin{cases}x(r,\theta,\zeta)=r\cos\theta\\y(r,\theta,\zeta)=r\sin\theta\\z(r,\theta,\zeta)=\zeta\end{cases}

\implies(\partial(x,y,z))/(\partial(r,\theta,\zeta))=\begin{vmatrix}x_r&x_\theta&x_\zeta\\y_r&y_\theta&y_\zeta\\z_r&z_\theta&z_\zeta\end{vmatrix}=\begin{vmatrix}\cos\theta&-r\sin\theta&0\\\sin t&r\cos t&0\\0&0&1\end{vmatrix}=r

Letting
E denote the same region in cylindrical coordinates, you have


\displaystyle\iiint_E r\cos\theta\left|(\partial(x,y,z))/(\partial(r,\theta,\zeta))\right|\,\mathrm dV=\int_0^(2\pi)\int_0^2\int_(r^2\sin^2\theta)^(8-r^2(1+\cos^2\theta))r^2\cos\theta\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta

In either case the integral reduces to 0.
User Camlspotter
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories