Given:
The function is
![f(x)=x^2+3](https://img.qammunity.org/2022/formulas/mathematics/high-school/qmo11wjnixbpehwpp18pmcjgvayr52mpdb.png)
To find:
The slope of the tangent line at x = 11.
Solution:
The slope of the tangent is the value of f'(x) at x=11.
We have,
![f(x)=x^2+3](https://img.qammunity.org/2022/formulas/mathematics/high-school/qmo11wjnixbpehwpp18pmcjgvayr52mpdb.png)
Differentiate with respect to x.
![\left[\because (d)/(dx)x^n=nx^(n-1),(d)/(dx)C=0,\text{ where C is constant}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/ue7ag0r08gg6ecj3qg1dls5b5s57jh7puj.png)
![f'(x)=2x](https://img.qammunity.org/2022/formulas/mathematics/high-school/ciwlpx4o9ihpbvyoez1frpnl2j843oo39o.png)
Substitute x=11 in the above equation.
![f'(11)=2(11)](https://img.qammunity.org/2022/formulas/mathematics/high-school/r2bt72ohfyxdcnzd6qj7q9ofdjclzzgr78.png)
![f'(11)=22](https://img.qammunity.org/2022/formulas/mathematics/high-school/6l5ofjtvzfcthux5z3ozjd49bqoqbxcu8v.png)
Therefore, the slope of the tangent at x=11 is 22.