134k views
3 votes
How do you this? log(3)x^6=12

User Snifff
by
7.9k points

1 Answer

5 votes
well, if you recall that a logarithm is just another notational way to express an exponential, then
\bf log_{{ a}}{{ b}}=y \iff {{ a}}^y={{ b}}\qquad\qquad {{ a}}^y={{ b}}\iff log_{{ a}}{{ b}}=y \\\\ -----------------------------\\\\ thus\qquad log_3(x^6)=12 \iff 3^(12)=x^6


\bf -----------------------------\\\\ thus\qquad log_3(x^6)=12 \iff 3^(12)=x^6\impliedby taking\ \sqrt[6]{\qquad } \\\\\\ \sqrt[6]{3^(12)}=\sqrt[6]{x^6}\implies \sqrt[6]{3^(12)}=x \\\\\\ \textit{now, recall }3^(12)\implies 3^(2\cdot 6)\implies (3^2)^6\qquad thus \\\\\\ \sqrt[6]{(3^2)^6}=x\implies 3^2=x\implies 9=x

User WasiF
by
7.6k points

No related questions found