153k views
4 votes
Integral of 4(6x-1)^2/3 dx

1 Answer

3 votes

\displaystyle\int4(6x-1)^(2/3)\,\mathrm dx

Let
y=6x-1, so that
\mathrm dy=6\,\mathrm dx\implies\frac{\mathrm dy}6=\mathrm dx. Then


\displaystyle\int4(6x-1)^(2/3)\,\mathrm dx=\int\frac46y^(2/3)\,\mathrm dy

Simplifying and applying the power rule gives


\displaystyle\frac23(y^(5/3))/(\frac53)+C=\frac23*\frac35y^(5/3)+C=\frac25y^(5/3)+C

and back-substituting to get this in terms of
x, you end up with


\frac25(6x-1)^(5/3)+C
User Settapon H
by
8.0k points