1.8k views
2 votes
(D^2 - 1) y = x^2 sinx

1 Answer

4 votes

(D^2-1)y=x^2\sin x

First consider the homogeneous part,


(D^2-1)y=(\mathrm d^2y)/(\mathrm dx^2)-y=0

which has characteristic equation


r^2-1=(r-1)(r+1)=0

This has roots
r=\pm1, so the characteristic solution is


y_c=C_1e^x+C_2e^(-x)

For the nonhomogeneous part, consider a solution of the form


y_p=(a_2x^2+a_1x+a_0)\sin x+(b_2x^2+b_1x+b_0)\cos x

which has second derivative


(\mathrm d^2y_p)/(\mathrm dx^2)=(-b_2x^2+(4a_2x-b_1)x+2a_1-b_0+2b_2)\cos x+(a_2x^2+(a_1+4b_2)x+a_0-2a_2+2b_1)\sin x

Substituting into the ODE gives


(-2b_2x^2+(4a_2-2b_1)x+2a_1-2b_0+2b_2)\cos x+(-2a_2x^2+(-2a_2-4b_2)x-2a_0-2b_1+2a_2)\sin x=x^2\sin x

Matching up coefficients gives the system


\begin{cases}-2b_2=0\\4a_2-2b_1=0\\2a_1-2b_0+2b_2=0\\-2a_2=1\\-2a_1-4b_2=0\\-2a_0-2b_1+2a_2=0\end{cases}

which has solutions


a_2=-\frac12,a_1=0,a_0=\frac12,b_2=0,b_1=-1,b_0=0

So the particular solution is


y_p=\left(-\frac12x^2+\frac12\right)\sin x-x\cos x

Therefore the general solution is


y=y_c+y_p

y=C_1e^x+C_2e^(-x)+\left(-\frac12x^2+\frac12\right)\sin x-x\cos x
User Dnice
by
8.2k points

No related questions found