Answer:
The minimum sample size needed for use of the normal approximation is 50.
Explanation:
Suitability of the normal distribution:
In a binomial distribution with parameters n and p, the normal approximation is suitable is:
np >= 5
n(1-p) >= 5
In this question, we have that:
p = 0.9
Since p > 0.5, it means that np > n(1-p). So we have that:





The minimum sample size needed for use of the normal approximation is 50.