Given:
m∠3 = 63°
Let's find the m∠5 and m∠8.
• m∠5:
Angle 5 and angle 3 are alternate interior angles.
Alternate interior angles are angles formed on the opposite sides of the transversal.
To find the measure of angle 5, apply the Alternate Interior Angles theorem which states that when two parallel lines are cut by a transversal, the alternate interior angles are congruent.
The measure of angle 5 will also be 63 degrees.
Thus, we have:
m∠3 = m∠5 = 63°
m∠5 = 63°
• m∠8:
Angle 8 and angle 5 are linear pair of angles.
Angles that form a linear pair are supplementary.
Supplementary angles are angles that sum up to 180 degrees.
Thus, we have:
m∠8 + m∠5 = 180
m∠8 + 63 = 180
Subtract 63 from both sides:
m∠8 + 63 - 63 = 180 - 63
m∠8 = 117°
Therefore, the measure of angle 8 is 117 degrees.
ANSWER:
• m,∠,5 = 63°
,
• m∠8 = 117°