120k views
0 votes
If tan 0=5/4, calculate the value of cos 0

User Alexmac
by
8.6k points

1 Answer

3 votes

5
If tan θ = —— , calculate the value of cos θ:
4


Recall the definition of the tangent function:

sin θ
tan θ = ————
cos θ

5 sin θ
—— = ————
4 cos θ

Cross multiply:

5 · cos θ = 4 · sin θ

Square both sides:

(5 · cos θ)² = (4 · sin θ)²

5² · cos² θ = 4² · sin² θ

25 · cos² θ = 16 · sin² θ

But sin² θ = 1 – cos² θ. Substitute that for sin² θ into the equation above, then you get

25 · cos² θ = 16 · (1 – cos² θ)

25 · cos² θ = 16 – 16 · cos² θ

Isolate cos² θ:

25 · cos² θ + 16 · cos² θ = 16

(25 + 16) · cos² θ = 16

41 · cos² θ = 16

16
cos² θ = ———
41


cos² θ = ————
(√41)²

Take square root of both sides:

4
cos θ = ± ———
√41

4 4
cos θ = – ——— or cos θ = ———
√41 √41


The sign of cos θ depends on which quadrant θ lies. Since you first have a positive value for tan θ, then that means θ lies either in the 1st or the 3rd quadrant.

• If θ is a 1st quadrant angle, then

cos θ > 0

4
cos θ = ———
√41

• If θ is a 3rd quadrant angle, then

cos θ < 0

4
cos θ = – ———
√41


I hope this helps. =)

User Chords
by
7.6k points