34.1k views
3 votes
Derivative of square root 24x

User Somjit
by
8.4k points

1 Answer

5 votes

Answer:


\displaystyle (d)/(dx) = (√(6x))/(x)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = √(24x)

Step 2: Differentiate

  1. Basic Power Rule [Derivative Rule - Chain Rule]:
    \displaystyle y' = (1)/(2√(24x)) \cdot (d)/(dx)[24x]
  2. Basic Power Rule [Derivative Property - Multiplied Constant]:
    \displaystyle y' = (24)/(2√(24x))
  3. Simplify:
    \displaystyle y' = (12)/(√(24x))
  4. Rationalize:
    \displaystyle y' = (12√(24x))/(24x)
  5. Simplify:
    \displaystyle y' = (√(6x))/(x)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Mikejohnstn
by
8.3k points