154k views
0 votes
Find the length of the curve y = integral from 1 to x of sqrt(t^3-1)

User Poorvank
by
7.0k points

1 Answer

4 votes

y=\displaystyle\int_1^x√(t^3-1)\,\mathrm dt

By the fundamental theorem of calculus,


(\mathrm dy)/(\mathrm dx)=(\mathrm d)/(\mathrm dx)\displaystyle\int_1^x√(t^3-1)\,\mathrm dt=√(x^3-1)

Now the arc length over an arbitrary interval
(a,b) is


\displaystyle\int_a^b\sqrt{1+\left((\mathrm dy)/(\mathrm dx)\right)^2}\,\mathrm dx=\int_a^b√(1+x^3-1)\,\mathrm dx=\int_a^bx^(3/2)\,\mathrm dx

But before we compute the integral, first we need to make sure the integrand exists over it.
x^(3/2) is undefined if
x<0, so we assume
a\ge0 and for convenience that
a<b. Then


\displaystyle\int_a^bx^(3/2)\,\mathrm dx=\frac25x^(5/2)\bigg|_(x=a)^(x=b)=\frac25\left(b^(5/2)-a^(5/2)\right)
User Brien
by
7.4k points