85.0k views
0 votes
How do i find the antiderivative of sin^2(x, cos^2(x and tan^2(x? i know how to antidifferentiate sinx, cosx, and tanx, but these just stump me.. thank you for the help!?

1 Answer

1 vote
For
\sin^2x and
\cos^2x, it's helpful to remember the half-angle identities:


\sin^2x=\frac{1-\cos2x}2

\cos^2x=\frac{1+\cos2x}2

So


\displaystyle\int\sin^2x\,\mathrm dx=\frac12\int(1-\cos2x)\,\mathrm dx=\frac x2-\frac{\sin2x}4=C

\displaystyle\int\cos^2x\,\mathrm dx=\frac12\int(1+\cos2x)\,\mathrm dx=\frac x2+\frac{\sin2x}4=C

For
\tan^2x, the Pythagorean identity suffices:


\sin^2x+\cos^2x=1\implies \tan^2x+1=\sec^2x

which means


\displaystyle\int\tan^2x\,\mathrm dx=\int(\sec^2x-1)\,\mathrm dx=\tan x-x+C

since
(\mathrm d)/(\mathrm dx)\tan x=\sec^2x.
User Kostas Demiris
by
7.8k points