199k views
2 votes
What is the indefinite integral of tan^5xdx?

1 Answer

2 votes

\displaystyle\int\tan^5x\,\mathrm dx=\int\tan^4x\tan x

=\displaystyle\int(\sec^2x-1)^2\tan x\,\mathrm dx

=\displaystyle\int(\sec^4x-2\sec^2x+1)\tan x\,\mathrm dx

=\displaystyle\int\sec^3x\sec x\tan x\,\mathrm dx-2\int\sec^2x\tan x\,\mathrm dx+\int\tan x\,\mathrm dx

For the first integral, let
a=\sec x so that
\mathrm da=\sec x\tan x\,\mathrm dx. For the second,
b=\tan x so that
\mathrm db=\sec^2x\,\mathrm dx. The last integral is standard, but if you're not familiar with it, you could write
\tan x=(\sin x)/(\cos x) and set
c=\cos x so that
\mathrm dc=-\sin x\,\mathrm dx. Now


=\displaystyle\int a^3\,\mathrm da-2\int b\,\mathrm db-\int\frac{\mathrm dc}c

=\displaystyle\frac{a^4}4-b^2-\ln|c|+C

=\displaystyle\frac{\sec^4x}4-\tan^2x-\ln|\cos x|+C
User Andrew Arrow
by
8.2k points