metersGiven:
a.) The length of a rectangle is given by a number, x (meters).
b.) The width is two meters longer than the length.
c.) The area of the rectangle is 120 m^2.
Let's first recall the formula for getting the area of the triangle.
Area = L x W
Where,
L = Length
W = Width
The width is two meters longer than the length. Therefore, we can say that:
W = L + 2
Let's now determine the measure of the dimension of the rectangle:
Let,
x = length of the rectangle
We get,
Based on the relationships given, the Length of the rectangle has two possible measures.
L - 10 = 0
L = 10 m
L + 12 = 0
L = -12 m
Since a length must never be a negative value, the length of the rectangle must be 10 m.
For the width, we get:
W = L + 2 = 10 + 2 = 12 m
Summary:
Length = 10 m
Width = 12 m