27.8k views
3 votes
Find the​ z-scores for which 8​% of the​ distribution's area lies between minus−z and z.

User Joerg
by
8.1k points

1 Answer

0 votes

\mathbb P(-z<Z<z)=0.08\implies \mathbb P(Z<-z)+\mathbb P(Z>z)=0.92

Because the distribution (normal) is symmetric, you know that
\mathbb P(Z<-z)=\mathbb P(Z>z), so


\mathbb P(Z<-z)+\mathbb P(Z>z)=2\mathbb P(Z<-z)=0.92\implies\mathbb P(Z<-z)=\mathbb P(Z>z)=0.46

Now,


\mathbb P(-z<Z<z)=\mathbb P(Z<z)-\mathbb P(Z<-z)=0.08

\implies\mathbb P(Z<z)=0.08+0.46=0.54

If
F_Z(z) is the CDF of the normal distribution, so that
F_Z(z)=\mathbb P(Z<z), then the z-score satisfies


\begin{cases}z={F_Z}^(-1)(0.54)\\z=-{F_Z}^(-1)(0.46)\end{cases}

so that
z\approx0.1004.
User Pheonyx
by
8.4k points