169,870 views
22 votes
22 votes
express the quadratic function f(x)=3x^2 + 6x - 2 in the form a(x + h)^2 + k where a,h and k are constants

User Suhas Bharadwaj
by
2.8k points

1 Answer

21 votes
21 votes

Answer:

Step-by-step explanation:

Given:


f(x)=3x^2+6x-2

First, we do completing the square on the given function to express it into vertex form. So,

We write it in the form:


\begin{gathered} x^2+2ax+a^2 \\ \end{gathered}

And, factor out 3: So,


\begin{gathered} 3(x^2+2x-(2)/(3)) \\ \text{where:} \\ 2a=2\text{ or a=1} \\ \text{Hence} \\ 3(x^2-2x-(2)/(3)+1^2-1^2) \end{gathered}

Since:


\begin{gathered} x^2+2ax+a^2=(x+a)^2 \\ So, \\ x^2+2x+1^2=(x+1)^2 \end{gathered}

Then,


\begin{gathered} 3(x^2-2x-(2)/(3)+1^2-1^2) \\ =3((x+1)^2-(2)/(3)-1^2) \\ \text{Simplify} \\ f(x)=3(x+1)^2-2-3 \\ f(x)=3(x+1)^2-5 \end{gathered}

Therefore, the answer is:


f(x)=3(x+1)^2-5

User Arnette
by
3.3k points