173k views
4 votes
Solve for θ
1.5 = (sin(θ/2 + 60/2)/(sin(θ/2)

User Pure
by
5.7k points

1 Answer

4 votes
Assuming
\theta is measured in degrees, let's first convert to radians.


\frac{60}2^\circ=30^\circ*\frac{\pi\text{ rad}}{180^\circ}=\frac\pi6

So the equation is


\frac32=(\sin\left(\frac\theta2+\frac\pi6\right))/(\sin\frac\theta2)

3\sin\frac\theta2=2\sin\left(\frac\theta2+\frac\pi6\right)

3\sin\frac\theta2=2\left(\sin\frac\theta2\cos\frac\pi6+\cos\frac\theta2\sin\frac\pi6\right)

3\sin\frac\theta2=\sqrt3\sin\frac\theta2+\cos\frac\theta2

3=\sqrt3+\cot\frac\theta2

3-\sqrt3=\cot\frac\theta2

\mathrm{arccot}(3-\sqrt3)+2n\pi=\frac\theta2

\theta=2\mathrm{arccot}(3-\sqrt3)+2n\pi

where
n is any integer.
User Cory Walker
by
5.9k points