Given the matrix:
Given that it represents a linear system, we have the set of equations:
(1)x + 3y = 6
0x + (1)y = -1
x + 3y = 6..................equation 1
y = -1.........................equation 2.
Let's solve the system using substitution method.
Substitute -1 for y in equation 1:
x + 3(-1) = 6
x + (-3) = 6
x - 3 = 6
Add 3 to both sides:
x - 3 + 3 = 6 + 3
x = 9
From equation 2, we have the value of y:
y = -1
Therefore, the solution to the system is:
x = 9, y = -1
In point form:
(x, y) ==> (9, -1)
ANSWER:
x = 9, y = -1