206k views
4 votes
Find all solutions of the equations in the interval [0,2pi].

1. tan^(2) x + tan x = 0
2. sin 2 a - cos a = 0
3. 4 cos^(2) x - 3 = 0
4. csc^(2) x - csc x - 2 = 0

1 Answer

4 votes
1.
\tan^2x+\tan x=\tan x(\tan x+1)=0\implies \begin{cases}\tan x=0\\\tan x+1=0\end{cases}

Since
\tan x=(\sin x)/(\cos x), you will have
\tan x=0 whenever
\sin x=0. This happens only when
x=0,\pi,2\pi. Meanwhile,
\tan x+1=0\implies \tan x=-1, which happens when
x=\frac{3\pi}4,\frac{7\pi}4.

2.
\sin2a-\cos a=2\sin a\cos a-\cos a=\cos a(2\sin a-1)=0\implies\begin{cases}\cos a=0\\2\sin a-1=0\end{cases}

You have
\cos a=0 when
a=\frac\pi2,\frac{3\pi}2, and
2\sin a-1=0\implies \sin a=\frac12. This happens when
a=\frac\pi6,\frac{5\pi}6.

3.
4\cos^2x-3=(2\cos x+\sqrt3)(2\cos x-\sqrt3)=0\implies\cos x=\pm\frac{\sqrt3}2

This happens when
x=\frac\pi6,\frac{5\pi}6,\frac{7\pi}6,\frac{11\pi}6.

4.
\csc^2x-\csc x-2=(\csc x-2)(\csc x+1)=0\implies\begin{cases}\csc x-2=0\\\csc x+1=0\end{cases}

You have
\csc x-2=0\implies \csc x=2\implies \sin x=\frac12, which you know from (2) that the solutions are
x=\frac\pi6,\frac{5\pi}6. Meanwhile,
\csc x+1=0\implies \csc x=-1\implies \sin x=-1, and this happens only when
x=\frac{3\pi}2.
User Mark Roper
by
8.0k points