104k views
2 votes
Tan x = sin x / cos x , therefore tan (90-A) = ? . (All angle measurements are in degrees)

Choices are below:
a. 1/tan(90-A)
b. 1/sin A
c. 1/cos(90-A)
d. 1/tan A

2 Answers

6 votes

Answer:

d. 1/tanA

Explanation:

In order to answer, you have to replace x=90-A in the trigonometric identity to express the tangent in function of sine and cosine.


tan(90-A)=(sin(90-A))/(cos(90-A))

Now you have to apply the following trigonometric identities:

Sin(α-β)=Sin(α)Cos(β)-Cos(α)Sin(β)

Cos(α-β)=Cos(α)Cos(β)+Sin(α)Sin(β)

In this case, α=90 and β=A

Therefore:


(Sin(90)Cos(A)-Cos(90)Sin(A))/(Cos(90)Cos(A)+Sin(90)Sin(A))

But Sin(90)=1 and Cos(90)=0


(Cos(A))/(Sin(A)) = (1)/(tan(A))

User Roman Imankulov
by
7.1k points
4 votes

Answer:

Option D.
(1)/(tanA)

Explanation:

tan ( 90-A ) =
(sin(90-A))/(cos(90-A))

since sin (90-A) = cos A

and cos (90-A) = sin A

So
(sin(90-A))/(cos(90-A))=(CosA)/(SinA)=cot A=(1)/(tanA)

Option D.
(1)/(tanA)
is the correct answer.

User Sascha Konietzke
by
8.0k points