204,200 views
24 votes
24 votes
A projectile is fired vertically upwards and can be modeled by the function h(t)= -16t to the second power+600t +225 during what time interval will the project I’ll be more than 4000 feet above the ground round your answer to the nearest hundredth

A projectile is fired vertically upwards and can be modeled by the function h(t)= -16t-example-1
User Grummle
by
3.2k points

1 Answer

18 votes
18 votes

Given:


h(t)=-16t^2+600t+225

To find the time interval when the height is about more than 4000 feet:

Let us substitute,


\begin{gathered} h(t)\ge4000 \\ -16t^2+600t+225\ge4000 \\ -16t^2+600t+225-4000\ge0 \\ -16t^2+600t-3775\ge0 \end{gathered}

Using the quadratic formula,

Here, a= -16, b=600, and c= -3775


\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ =\frac{-600\pm\sqrt[]{600^2-4(-16)(-3775)}}{2(-16)} \\ =\frac{-600\pm\sqrt[]{360000^{}-241600}}{-32} \\ =\frac{-600\pm\sqrt[]{118400}}{-32} \\ =\frac{-600\pm40\sqrt[]{74}}{-32} \\ =\frac{-75\pm5\sqrt[]{74}}{-4} \\ t=\frac{-75+5\sqrt[]{74}}{-4},x=\frac{-75-5\sqrt[]{74}}{-4} \\ t=7.99709,t=29.5029 \end{gathered}

So, the interval is,


8.00\le\: t\le\: 29.50

User Notedible
by
3.0k points