209k views
3 votes
Find the solution of the given initial value problem. y'-y=11te^2t, y(0)=1

User Wasyster
by
5.8k points

1 Answer

4 votes

y'-y=11te^(2t)

e^(-t)y'-e^(-t)y=11te^t

(\mathrm d)/(\mathrm dt)\left[e^(-t)y\right]=11te^t

e^(-t)y=11\displaystyle\int te^t\,\mathrm dt

e^(-t)y=11e^t(t-1)+C

Since
y(0)=1, you have


1=11(-1)+C\implies C=12

and so


e^(-t)y=11e^t(t-1)+12

y=11e^(2t)(t-2)+12e^t