342,697 views
13 votes
13 votes
Use the pair of functions to find f(g(x)) and g(f(x)). Simplify your answers.f(x)=sqrt(x)+2g(x)=x^2+7f(g(x))= ?g(f(x))= ?

Use the pair of functions to find f(g(x)) and g(f(x)). Simplify your answers.f(x)=sqrt-example-1
User Giacomo Santarnecchi
by
3.0k points

1 Answer

16 votes
16 votes

Answer:


\begin{gathered} \begin{equation*} f(g(x))=√(x^2+7)+2 \end{equation*} \\ \begin{equation*} g(f(x))=x+4√(x)+11 \end{equation*} \end{gathered}

Explanation:

Given the functions f(x) and g(x) below:


\begin{gathered} f(x)=√(x)+2 \\ g\mleft(x\mright)=x^2+7 \end{gathered}

Part A

We want to find the simplified form of f(g(x)).


f(x)=√(x)+2

Replace x with g(x):


f(g(x))=√(g(x))+2

Finally, enter the expression for g(x) and simplify if possible:


\implies f\mleft(g\mleft(x\mright)\mright)=√(x^2+7)+2

Part B

We want to find the simplified form of g(f(x)). To do this, begin with g(x):


g\mleft(x\mright)=x^2+7

Replace x with f(x):


g(f(x))=[f(x)]^2+7

Finally, enter the expression for f(x) and simplify if possible:


\begin{gathered} g\mleft(f\mleft(x\mright)\mright)=(√(x)+2)^2+7 \\ =(√(x)+2)(√(x)+2)+7 \\ =x+2√(x)+2√(x)+4+7 \\ \implies g(f(x))=x+4√(x)+11 \end{gathered}

Therefore:


\begin{equation*} g(f(x))=x+4√(x)+11 \end{equation*}

User Natchiketa
by
3.2k points