121k views
0 votes
In what direction and by how many units is the graph of f(x) = −7 sin(3x + π) − 2 vertically and horizontally shifted?

User Garcon
by
5.3k points

1 Answer

2 votes


\bf ~\hspace{10em}\textit{function transformations} \\\\\\ \begin{array}{llll} f(x)= A( Bx+ C)^2+ D \\\\ f(x)= A√( Bx+ C)+ D \\\\ f(x)= A(\mathbb{R})^( Bx+ C)+ D \end{array}\qquad \qquad \begin{array}{llll} f(x)=\cfrac{1}{A(Bx+C)}+D \\\\\\ f(x)= A sin\left( B x+ C \right)+ D \end{array} \\\\[-0.35em] ~\dotfill\\\\ \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}


\bf ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if } B\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis} \\\\ \bullet \textit{ horizontal shift by }( C)/( B)\\ ~~~~~~if\ ( C)/( B)\textit{ is negative, to the right}\\\\ ~~~~~~if\ ( C)/( B)\textit{ is positive, to the left}\\\\


\bf \bullet \textit{ vertical shift by } D\\ ~~~~~~if\ D\textit{ is negative, downwards}\\\\ ~~~~~~if\ D\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }(2\pi )/( B)

now, with that template in mind


\bf f(x) = \stackrel{A}{-7}sin(\stackrel{B}{3}x+\stackrel{C}{\pi } )\stackrel{D}{-2}\qquad \begin{cases} D=&-2\\ &\textit{vertical shift}\\ &\textit{downwards by 2 units}\\ (C)/(B)=&(\pi )/(3)\\ &\textit{horizontal shift}\\ &(\pi )/(3)\textit{ units to the left} \end{cases}

User Aaaristo
by
6.5k points