103,036 views
33 votes
33 votes
Simplify by writing the expression with positive exponents. Assume that all variables represent nonzero real numbers

Simplify by writing the expression with positive exponents. Assume that all variables-example-1
User Tobire
by
2.5k points

1 Answer

20 votes
20 votes


\lbrack(144q^2)/(m^6p^4)\rbrack^{}

Step-by-step explanation

Let's remember some properties ofthe fractions ans exponents,


\begin{gathered} a^(-n)=(1)/(a^n) \\ ((a)/(b))^n=(a^n)/(b^n) \\ (ab)^n=a^nb^n \\ (a^n)^m=a^(m\cdot n) \end{gathered}

so

Step 1


\lbrack(4p^(-2)q)/(3^(-1)m^3)\rbrack^2

reduce by using the properties


\begin{gathered} \lbrack(4p^(-2)q)/(3^(-1)m^3)\rbrack^2 \\ \lbrack(4q)/(3^(-1)m^3p^2)\rbrack^2 \\ \lbrack(3^1\cdot4q)/(m^3p^2)\rbrack^2 \\ \lbrack(12q)/(m^3p^2)\rbrack^2 \\ \lbrack(144q^2)/(m^(3\cdot2)p^(2\cdot2))\rbrack^{} \\ \lbrack(144q^2)/(m^6p^4)\rbrack^{} \end{gathered}

therefore, the answer is


\lbrack(144q^2)/(m^6p^4)\rbrack^{}

I hope this helps you

User RizJa
by
2.2k points