134k views
4 votes
Solving simultaneous equations with one quadratic, x^2+y^2=16 and y=x+3

User Chesterbr
by
7.1k points

1 Answer

7 votes
If
y=x+3, then in the first equation you have


x^2+(x+3)^2=x^2+(x^2+6x+9)=2x^2+6x+9=16

Rewriting a bit, you get


x^2+3x+\frac92=8


x^2+3x+\frac94+\frac94=8


\left(x+\frac32\right)^2=\frac{23}4


x=-\frac32\pm\frac{√(23)}2

Now, since
y=x+3, you also get


y=-\frac32\pm\frac{√(23)}2+3=\frac32\pm\frac{√(23)}2

So, there are two solutions here:


(x,y)=\left(-\frac32+\frac{√(23)}2,\frac32+\frac{√(23)}2\right)

(x,y)=\left(-\frac32-\frac{√(23)}2,\frac32-\frac{√(23)}2\right)
User Sangbeom Han
by
8.4k points

No related questions found