9.6k views
2 votes
Math question!


\int\ { √(tan(x)) } \, dx

Please show your work!

1 Answer

3 votes
Solution:
\int\limits \: √(tan(x)) \: dx
1) pass: make the replacement

y = √(tan(x)) = tan(x)^ (1)/(2)

dy = (1)/(2) *(tan\:x)^{- (1)/(2)} * sec^2x\:dx

2dy = (1)/(y)*(tan^2*x+1)dx

2ydy = (y^4+1)dx

dx = (2y)/(y^4+1) dy

2) pass: We substitute in the integral of the statement

I = \int\limits √(tanx) \: dx

I = \int\limits \:y* (2y)/(y^4+1) dy

I = \int\limits\: (2y^2)/(y^4+1) dy

3) pass: Using the Gauss Lemma, we will factor the polynomial (y⁴ + 1) knowing that there are no real roots, so we will directly try to factorize into two polynomials of degree 2:


y^4+1 = (y^2+ay+1)(y^2+cy+1)

y^4+1 = y^4+(a+c)y^3 + (ac+2)y^2+(a+c)y+1
Make the system linear, to find the values ​​of "a" and "c".

\left \{ {{a+c=0} \atop {ac+2=0}} \right.

a+c = 0 \:\to c=-a

ac+2=0\to ac = -2\to a*(-a) = -2\to -a^2 = -2\to a =√(2)

a+c = 0 \:\to c=-a\to c = - √(2)
We have:

(y^4+1)= (y^2+ √(2y) +1)(y^2- √(2y) +1)

4) pass: We will use the partial fractions method, using the fraction from within the integral:

(2y^2)/(y^4+1) = (Ay+B)/(y^2+ √(2y)+1 ) + (Cy+D)/(y^2- √(2y) +1)

= ((A+C)y^3+(- √(2)A+B+ √(2)C+D)y^2+(A- √(2)B+C+ √(2)D)y+(B+D) )/(y^4+1)


\longrightarrow \left \{ {{A+C=0\to A=-C} \atop { -√(2)(A-C)+(B+D)=2 }} \right.

-√(2)(A-C)+(B+D)=2 \to - √(2) *2A+0=2\to A = - (1)/( √(2) )

A+C=0\to C=-A\to C = - (- (1)/( √(2) ) )\to C = (1)/( √(2) )

(A+C)+ √(2) (D-B)=0\to 0+ √(2) (D-B)=0 \to B=D=0

B+D=0

5)pass: Adopt what was used above:


I = \int\limits ( -(1)/( √(2) )y )/(y^2+ √(2)y+1 ) dy+ \int\limits ( (1)/( √(2) )y )/(y^2- √(2)y+1 ) dy


I = - (1)/( √(2) ) \underbrace{\int\limits (y)/(y^2+ √(2y)+1 )dy }_(I_1)+ (1)/( √(2) ) \underbrace{\int\limits (y)/(y^2- √(2y)+1 )dy }_(I_2)

6) pass: Now, solve it separately


I_1 = \int\limits (y)/(y^2+ √(2y)+1 )dy

2I_1 = \int\limits(2y)/(y^2+ √(2y)+1 )dy = \int\limits (2y- √(2)+ √(2) )/(y^2+ √(2y)+1 ) dy

2I_1 = \int\limits(2y+ √(2) )/(y^2+ √(2y)+1 )dy - \int\limits( √(2) )/(y^2+ √(2y)+1 )dy

2I_1 = ln|y^2+ √(2)y+1| - √(2) \int\limits (1)/((y √(2)+1)^2+1 )dy

\boxed - ( √(2) )/(2) arctan(y √(2)+1 )

and


I_2 = \int\limits (y)/(y^2- √(2y)+1 )dy

2I_2 = \int\limits(2y)/(y^2- √(2y)+1 )dy = \int\limits (2y- √(2)+ √(2) )/(y^2+ √(2y)+1 ) dy

2I_2 = \int\limits(2y- √(2) )/(y^2- √(2y)+1 )dy - \int\limits( √(2) )/(y^2- √(2y)+1 )dy

2I_2 = ln|y^2- √(2)y+1| + √(2) \int\limits (1)/((y √(2)-1)^2+1 )dy

\boxedI_2 = (1)/(2) ln

7) pass: Let's use the expression of
I


I = - (I_1)/( √(2) ) + (I_2)/( √(2) )


I = - ( (1)/(2)ln|y^2+ √(2)y+1|- ( √(2) )/(2)arctan(y √(2) + 1) )/( √(2) ) + ( (1)/(2)ln|y^2- √(2)y+1|+ ( √(2) )/(2)arctan(y √(2) - 1) )/( √(2) )

I = - (1)/(2 √(2) ) ln|y^2+ √(2) y +1|+(1)/( √(2) ) arctan(y √(2) +1)+

+(1)/(2 √(2) ) ln|y^2- √(2) y +1|+(1)/( √(2) ) arctan(y √(2)-1)

8) pass: Now, returning to the expression as a function of x, we finally arrive at the final answer:


I = - (1)/(2 √(2) ) ln|y^2+ √(2) y +1|+(1)/( √(2) ) arctan(y √(2) +1)+

+(1)/(2 √(2) ) ln|y^2- √(2) y +1|+(1)/( √(2) ) arctan(y √(2)-1)

I = - (1)/(2 √(2) ) ln|( √(tan\:x))^2+ √(2)( √(tan\:x)) +1| + (1)/( √(2) ) arctan(( √(tan\:x)) √(2) +1

+(1)/(2 √(2) ) ln|( √(tan\:x))^2- √(2)( √(tan\:x)) +1| + (1)/( √(2) ) arctan(( √(tan\:x)) √(2) -1

Answer:


\boxedI = - (1)/(2 √(2) ) ln

\boxed + (1)/( √(2) )arctan( √(2\:tan\:x) -1) +C}
\end{array}}\qquad\quad\checkmark











User ImTooStupidForThis
by
9.0k points