9.6k views
2 votes
Math question!


\int\ { √(tan(x)) } \, dx

Please show your work!

1 Answer

3 votes
Solution:
\int\limits \: √(tan(x)) \: dx
1) pass: make the replacement

y = √(tan(x)) = tan(x)^ (1)/(2)

dy = (1)/(2) *(tan\:x)^{- (1)/(2)} * sec^2x\:dx

2dy = (1)/(y)*(tan^2*x+1)dx

2ydy = (y^4+1)dx

dx = (2y)/(y^4+1) dy

2) pass: We substitute in the integral of the statement

I = \int\limits √(tanx) \: dx

I = \int\limits \:y* (2y)/(y^4+1) dy

I = \int\limits\: (2y^2)/(y^4+1) dy

3) pass: Using the Gauss Lemma, we will factor the polynomial (y⁴ + 1) knowing that there are no real roots, so we will directly try to factorize into two polynomials of degree 2:


y^4+1 = (y^2+ay+1)(y^2+cy+1)

y^4+1 = y^4+(a+c)y^3 + (ac+2)y^2+(a+c)y+1
Make the system linear, to find the values ​​of "a" and "c".

\left \{ {{a+c=0} \atop {ac+2=0}} \right.

a+c = 0 \:\to c=-a

ac+2=0\to ac = -2\to a*(-a) = -2\to -a^2 = -2\to a =√(2)

a+c = 0 \:\to c=-a\to c = - √(2)
We have:

(y^4+1)= (y^2+ √(2y) +1)(y^2- √(2y) +1)

4) pass: We will use the partial fractions method, using the fraction from within the integral:

(2y^2)/(y^4+1) = (Ay+B)/(y^2+ √(2y)+1 ) + (Cy+D)/(y^2- √(2y) +1)

= ((A+C)y^3+(- √(2)A+B+ √(2)C+D)y^2+(A- √(2)B+C+ √(2)D)y+(B+D) )/(y^4+1)


\longrightarrow \left \{ {{A+C=0\to A=-C} \atop { -√(2)(A-C)+(B+D)=2 }} \right.

-√(2)(A-C)+(B+D)=2 \to - √(2) *2A+0=2\to A = - (1)/( √(2) )

A+C=0\to C=-A\to C = - (- (1)/( √(2) ) )\to C = (1)/( √(2) )

(A+C)+ √(2) (D-B)=0\to 0+ √(2) (D-B)=0 \to B=D=0

B+D=0

5)pass: Adopt what was used above:


I = \int\limits ( -(1)/( √(2) )y )/(y^2+ √(2)y+1 ) dy+ \int\limits ( (1)/( √(2) )y )/(y^2- √(2)y+1 ) dy


I = - (1)/( √(2) ) \underbrace{\int\limits (y)/(y^2+ √(2y)+1 )dy }_(I_1)+ (1)/( √(2) ) \underbrace{\int\limits (y)/(y^2- √(2y)+1 )dy }_(I_2)

6) pass: Now, solve it separately


I_1 = \int\limits (y)/(y^2+ √(2y)+1 )dy

2I_1 = \int\limits(2y)/(y^2+ √(2y)+1 )dy = \int\limits (2y- √(2)+ √(2) )/(y^2+ √(2y)+1 ) dy

2I_1 = \int\limits(2y+ √(2) )/(y^2+ √(2y)+1 )dy - \int\limits( √(2) )/(y^2+ √(2y)+1 )dy

2I_1 = ln|y^2+ √(2)y+1| - √(2) \int\limits (1)/((y √(2)+1)^2+1 )dy

\boxed - ( √(2) )/(2) arctan(y √(2)+1 )

and


I_2 = \int\limits (y)/(y^2- √(2y)+1 )dy

2I_2 = \int\limits(2y)/(y^2- √(2y)+1 )dy = \int\limits (2y- √(2)+ √(2) )/(y^2+ √(2y)+1 ) dy

2I_2 = \int\limits(2y- √(2) )/(y^2- √(2y)+1 )dy - \int\limits( √(2) )/(y^2- √(2y)+1 )dy

2I_2 = ln|y^2- √(2)y+1| + √(2) \int\limits (1)/((y √(2)-1)^2+1 )dy

\boxedI_2 = (1)/(2) ln

7) pass: Let's use the expression of
I


I = - (I_1)/( √(2) ) + (I_2)/( √(2) )


I = - ( (1)/(2)ln|y^2+ √(2)y+1|- ( √(2) )/(2)arctan(y √(2) + 1) )/( √(2) ) + ( (1)/(2)ln|y^2- √(2)y+1|+ ( √(2) )/(2)arctan(y √(2) - 1) )/( √(2) )

I = - (1)/(2 √(2) ) ln|y^2+ √(2) y +1|+(1)/( √(2) ) arctan(y √(2) +1)+

+(1)/(2 √(2) ) ln|y^2- √(2) y +1|+(1)/( √(2) ) arctan(y √(2)-1)

8) pass: Now, returning to the expression as a function of x, we finally arrive at the final answer:


I = - (1)/(2 √(2) ) ln|y^2+ √(2) y +1|+(1)/( √(2) ) arctan(y √(2) +1)+

+(1)/(2 √(2) ) ln|y^2- √(2) y +1|+(1)/( √(2) ) arctan(y √(2)-1)

I = - (1)/(2 √(2) ) ln|( √(tan\:x))^2+ √(2)( √(tan\:x)) +1| + (1)/( √(2) ) arctan(( √(tan\:x)) √(2) +1

+(1)/(2 √(2) ) ln|( √(tan\:x))^2- √(2)( √(tan\:x)) +1| + (1)/( √(2) ) arctan(( √(tan\:x)) √(2) -1

Answer:


\boxedI = - (1)/(2 √(2) ) ln

\boxed + (1)/( √(2) )arctan( √(2\:tan\:x) -1) +C}
\end{array}}\qquad\quad\checkmark











User ImTooStupidForThis
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories