163k views
2 votes
Don't answer if you don't know the answer.

find the indefinite integral


\int\limits { (x+2)/(x^2+1) } \, dx

User Aryzing
by
7.9k points

1 Answer

5 votes

Answer:


\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = 2arctan(x) + (ln|x^2 + 1|)/(2) + C

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Expanding

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx

Step 2: Integrate Pt. 1

Set variables for u-substitution.

  1. Set u:
    \displaystyle u = x^2 + 1
  2. [u] Differentiate [Basic Power Rule, Addition/Subtraction]:
    \displaystyle du = 2x \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2)\int {(2(x + 2))/(x^2 + 1)} \, dx
  2. [Integrand] Expand:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2)\int {(2x + 4)/(x^2 + 1)} \, dx
  3. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ \int {(2x)/(x^2 + 1)} \, dx + \int {(4)/(x^2 + 1)} \, dx \bigg]
  4. [2nd Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ \int {(2x)/(x^2 + 1)} \, dx + 4\int {(1)/(x^2 + 1)} \, dx \bigg]
  5. [1st Integral] U-Substitution:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ \int {(1)/(u)} \, du + 4\int {(1)/(x^2 + 1)} \, dx \bigg]
  6. [1st Integral] Logarithmic Integration:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ ln|u| + 4\int {(1)/(x^2 + 1)} \, dx \bigg]
  7. [Integral] Arctrig Integration:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ ln|u| + 4 \bigg( (1)/(1)arctan \Big( (x)/(1) \Big) \bigg) \bigg] + C
  8. Simplify:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ ln|u| + 4arctan(x) \bigg] + C
  9. Expand:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = 2arctan(x) + (ln|u|)/(2) + C
  10. Back-Substitute:
    \displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = 2arctan(x) + (ln|x^2 + 1|)/(2) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Gribouillis
by
7.1k points