Answer:

General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Expanding
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2018/formulas/mathematics/high-school/44u8gzhn9ta01w8xtfd21jo1ablmtfakai.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2018/formulas/mathematics/college/vv6tmdt2ebyhbe4340gy3q8mh1dbk7tosc.png)
U-Substitution
Explanation:
Step 1: Define
Identify

Step 2: Integrate Pt. 1
Set variables for u-substitution.
- Set u:

- [u] Differentiate [Basic Power Rule, Addition/Subtraction]:

Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integrand] Expand:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ \int {(2x)/(x^2 + 1)} \, dx + \int {(4)/(x^2 + 1)} \, dx \bigg]](https://img.qammunity.org/2018/formulas/mathematics/high-school/i88tpavft0q5z38s3mje614iiu4ohzq82l.png)
- [2nd Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ \int {(2x)/(x^2 + 1)} \, dx + 4\int {(1)/(x^2 + 1)} \, dx \bigg]](https://img.qammunity.org/2018/formulas/mathematics/high-school/b9s5j24ngx8xk7xoyyo0g9mtjst438i49e.png)
- [1st Integral] U-Substitution:
![\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ \int {(1)/(u)} \, du + 4\int {(1)/(x^2 + 1)} \, dx \bigg]](https://img.qammunity.org/2018/formulas/mathematics/high-school/g1ep0qh3roeig2c5sy40pbqbqyerjmr9qw.png)
- [1st Integral] Logarithmic Integration:
![\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ ln|u| + 4\int {(1)/(x^2 + 1)} \, dx \bigg]](https://img.qammunity.org/2018/formulas/mathematics/high-school/gei42c4mjt9c7za4h5mg02aru931giqf0l.png)
- [Integral] Arctrig Integration:
![\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ ln|u| + 4 \bigg( (1)/(1)arctan \Big( (x)/(1) \Big) \bigg) \bigg] + C](https://img.qammunity.org/2018/formulas/mathematics/high-school/trjxc0u876mh6hqv4oyz8uh1j2otrwth67.png)
- Simplify:
![\displaystyle \int {(x + 2)/(x^2 + 1)} \, dx = (1)/(2) \bigg[ ln|u| + 4arctan(x) \bigg] + C](https://img.qammunity.org/2018/formulas/mathematics/high-school/p00a6vmzochib7qxxlrqgkphjiaeqo0ak8.png)
- Expand:

- Back-Substitute:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration