173k views
2 votes
What is the equation of the quadratic graph with a focus of (3, 6) and a directrix of y = 4? f(x) = one fourth (x − 3)2 + 1 f(x) = one fourth (x − 3)2 + 5 f(x) = −one fourth (x − 2)2 + 5 f(x) = −one fourth (x − 2)2

User Ian Nelson
by
7.4k points

2 Answers

1 vote

Answer:

b

Explanation:

User Shuvalov
by
7.0k points
4 votes
Let point (x, y) be any point on the graph, than the distance between (x, y) and the focus (3, 6) is sqrt((x - 3)^2 + (y - 6)^2) and the distance between (x, y) and the directrix, y = 4 is |y - 4|

Thus sqrt((x - 3)^2 + (y - 6)^2) = |y - 4|
(x - 3)^2 + (y - 6)^2 = (y - 4)^2
x^2 - 6x + 9 + y^2 - 12y + 36 = y^2 - 8y + 16
x^2 - 6x + 29 = -8y + 12y = 4y
(x - 3)^2 + 20 = 4y
y = 1/4(x - 3)^2 + 5

Required answer is f(x) = one fourth (x - 3)^2 + 5
User Krishna Pravin
by
8.2k points