164k views
4 votes
Calculus - Partial Fractions

Can someone please demonstrate the indefinite integral of (x^4-5x^3+6x^2-18)/(x^3+3x^2) dx
Thank you

User Ssougnez
by
5.8k points

1 Answer

5 votes

Answer:


\displaystyle \int {(x^4 - 5x^3 + 6x^2 - 18)/(x^3 + 3x^2)} \, dx = 28ln|x + 3| + 2ln|x| + (x^2)/(2) + (6)/(x) - 8x + C

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Algebra II

  • Long Division

Pre-Calculus

  • Partial Fraction Decomposition

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration

Explanation:

Step 1: Define

Identify


\displaystyle \int {(x^4 - 5x^3 + 6x^2 - 18)/(x^3 + 3x^2)} \, dx

Step 2: Partial Fraction Decomposition

  1. [Integrand] Factor:
    \displaystyle \int {(x^4 - 5x^3 + 6x^2 - 18)/(x^2(x + 3))} \, dx
  2. [Integrand] Simplify [Long Division, See Attachment]:
    \displaystyle (x^4 - 5x^3 + 6x^2 - 18)/(x^2(x + 3)) = x - 8 + (30x^2 - 18)/(x^2(x + 3))
  3. Split:
    \displaystyle (30x^2 - 18)/(x^2(x + 3)) = (A)/(x) + (B)/(x^2) + (C)/(x + 3)
  4. Simplify [Common Denominator]:
    \displaystyle 30x^2 - 18 = Ax(x + 3) + B(x + 3) + Cx^2
  5. [Decomp] Substitute in x = -3:
    \displaystyle 30(-3)^2 - 18 = A(-3)(-3 + 3) + B(-3 + 3) + C(-3)^2
  6. Simplify:
    \displaystyle 252 = 9C
  7. Solve:
    \displaystyle C = 28
  8. [Decomp] Substitute in x = 0:
    \displaystyle 30(0)^2 - 18 = A(0)(0 + 3) + B(0 + 3) + C(0)^2
  9. Simplify:
    \displaystyle -18 = 3B
  10. Solve:
    \displaystyle B = -6
  11. [Decomp] Coefficient Method:
    \displaystyle 3Ax + Bx = 0x
  12. [Coefficient Method] Substitute in B:
    \displaystyle 3A - 6 = 0
  13. [Coefficient Method] Solve:
    \displaystyle A = 2
  14. [Split Integrand] Substitute in variables:
    \displaystyle (x^4 - 5x^3 + 6x^2 - 18)/(x^2(x + 3)) = x - 8 + (2)/(x) - (6)/(x^2) + (28)/(x + 3)

Step 3: Integrate Pt. 1

  1. [Integral] Substitute in integrand [Split Integrand]:
    \displaystyle \int {\bigg( x - 8 + (2)/(x) - (6)/(x^2) + (28)/(x + 3) \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {x} \, dx - \int {8} \, dx + \int {(2)/(x)} \, dx - \int {(6)/(x^2)} \, dx + \int {(28)/(x + 3)} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {x} \, dx - 8\int {} \, dx + 2\int {(1)/(x)} \, dx - 6\int {(1)/(x^2)} \, dx + 28\int {(1)/(x + 3)} \, dx
  4. [4th Integrand] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle \int {x} \, dx - 8\int {} \, dx + 2\int {(1)/(x)} \, dx - 6\int {x^(-2)} \, dx + 28\int {(1)/(x + 3)} \, dx
  5. [1st/2nd/4th Integral] Reverse Power Rule:
    \displaystyle (x^2)/(2) - 8x + 2\int {(1)/(x)} \, dx - 6((-1)/(x)) + 28\int {(1)/(x + 3)} \, dx

Step 4: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = x + 3
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = dx

Step 5: Integrate Pt. 3

  1. [2nd Integral] U-Substitution:
    \displaystyle (x^2)/(2) - 8x + 2\int {(1)/(x)} \, dx - 6((-1)/(x)) + 28\int {(1)/(u)} \, du
  1. [Integrals] Logarithmic Integration:
    \displaystyle (x^2)/(2) - 8x + 2ln|x| - 6((-1)/(x)) + 28ln|u| + C
  2. Back-Substitute:
    \displaystyle (x^2)/(2) - 8x + 2ln|x| - 6((-1)/(x)) + 28ln|x + 3| + C
  3. Simplify:
    \displaystyle 28ln|x + 3| + 2ln|x| + (x^2)/(2) + (6)/(x) - 8x + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Calculus - Partial Fractions Can someone please demonstrate the indefinite integral-example-1
User DomDunk
by
6.5k points