Answer: expect to lose 679.07 dollars
==========================================================
Step-by-step explanation:
Assuming each free throw is independent of any other, the probability of making the next free throw is 359/449
The probability of making 3 in a row is (359/449)^3 = 0.511145 approximately which represents the probability of earning the $39
That must mean 1-0.511145 = 0.488855 is the approximate probability of losing $43
Let's make a table of outcomes and their associated probabilities.
X = amount of money the player earns (the person shooting the free throws)
Then from here we'll multiply each X and P(X) value for each separate row.
Example: 39*0.511145 = 19.934655
Let's form a third column of these products
Add up everything in the X*P(X) column and you should get roughly -1.08611 which rounds to -1.09
The player expects, on average, to lose about $1.09 each time they play this game. Playing 623 times means they should expect to lose 623*1.09 = 679.07 dollars
Of course, given the nature of this random process, it's not a guarantee they will lose this amount. This is just the average of many attempts.