57.9k views
1 vote
Expand the logarithmic expression.
log(b)squrt(13/73)

2 Answers

3 votes

\log_b\sqrt{(13)/(73)}=\frac12\log_b(13)/(73)=\frac{\log_b13-\log_b73}2
User Borislav Aymaliev
by
8.9k points
1 vote

Answer:


\frac{log_b{13}-log_b{73}}{2}

Explanation:


log_b{\sqrt{(13)/(73)}}

First we remove the square root


log_b({(13)/(73))^(1)/(2)}

As per log property we can move the exponent 1/2 before log


(1)/(2)log_b{(13)/(73)}

Now we apply log property to expand log (13/73)

log(a/b)= log(a) - log(b)


(1)/(2)log_b{13}-log_b{73}}


\frac{log_b{13}-log_b{73}}{2}


User Mishap
by
7.9k points