201k views
0 votes
Derivative of 2e^-1.5x*sin2pix

User Achrome
by
8.6k points

1 Answer

4 votes

Answer:


\displaystyle y' = e^(-1.5x) \bigg( 4 \pi \cos (2 \pi x) - 3 \sin (2 \pi x) \bigg)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = 2e^(-1.5x) \sin (2 \pi x)

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:
    \displaystyle y' = \big( 2e^(-1.5x) \big)' \sin (2 \pi x) + 2e^(-1.5x) \big( \sin (2 \pi x) \big)'
  2. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle y' = 2 \big( e^(-1.5x) \big)' \sin (2 \pi x) + 2e^(-1.5x) \big( \sin (2 \pi x) \big)'
  3. Exponential Differentiation:
    \displaystyle y' = -3e^(-1.5x) \sin (2 \pi x) + 2e^(-1.5x) \big( \sin (2 \pi x) \big)'
  4. Trigonometric Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle y' = -3e^(-1.5x) \sin (2 \pi x) + 2e^(-1.5x) \cos (2 \pi x)(2 \pi x)'
  5. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle y' = -3e^(-1.5x) \sin (2 \pi x) + 4 \pi e^(-1.5x) \cos (2 \pi x)(x)'
  6. Basic Power Rule:
    \displaystyle y' = -3e^(-1.5x) \sin (2 \pi x) + 4 \pi e^(-1.5x) \cos (2 \pi x)
  7. Factor:
    \displaystyle y' = e^(-1.5x) \bigg( -3 \sin (2 \pi x) + 4 \pi \cos (2 \pi x) \bigg)
  8. Rewrite:
    \displaystyle y' = e^(-1.5x) \bigg( 4 \pi \cos (2 \pi x) - 3 \sin (2 \pi x) \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Neil Graham
by
8.2k points