167k views
4 votes
Integrate e^x(sin(x) cos(x))

1 Answer

6 votes

I=\int e^x(\sin(x)\cos(x))dx=\int e^x((1)/(2)\sin(2x))dx=(1)/(2)\int e^x\sin(2x)dx


\text{If }u=\sin(2x)\to du=2\cos(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\ \text{Using }\int u\,dv=uv-\int v\,du:\\\\ I=(1)/(2)(e^x\sin(2x)-\int e^x(2\cos(2x))dx)\\\\ 2I=e^x\sin(2x)-2\underbrace{\int e^x\cos(2x)dx}_(I_2)

Looking for
I_2:


\text{If}~u=\cos(2x)\to du=-2\sin(2x)dx~\text{and}~dv=e^xdx\to v=e^x:\\\\ I_2=e^x\cos(2x)-\int e^x(-2\sin(2x))dx\\\\ I_2=e^x\cos(2x)+2\int e^x(\sin(2x))dx\\\\ I_2=e^x\cos(2x)+2\int e^x(2\sin(x)\cos(x))dx\\\\ I_2=e^x\cos(2x)+4\int e^x(\sin(x)\cos(x))dx=e^x\cos(2x)+4I

Replacing:


2I=e^x\sin(2x)-2I_2\iff\\\\2I=e^x\sin(2x)-2(e^x\cos(2x)+4I)\iff\\\\ 2I=e^x\sin(2x)-2e^x\cos(2x)-8I\iff\\\\ 10I=e^x\sin(2x)-2e^x\cos(2x)\iff\\\\ I=(e^x)/(10)(\sin(2x)-2\cos(2x))\\\\ \boxed{\int e^x(\sin(x)\cos(x))dx=(e^x)/(10)(\sin(2x)-2\cos(2x))+C}
User Evgeniya
by
8.3k points