Calculus
SCIENCE
Anatomy & Physiology
Astronomy
Astrophysics
Biology
Chemistry
Earth Science
Environmental Science
Organic Chemistry
Physics
MATH
Algebra
Calculus
Geometry
Prealgebra
Precalculus
Statistics
Trigonometry
HUMANITIES
English Grammar
U.S. History
World History
... AND BEYOND
Socratic Meta
Featured Answers
Topics
Search icon
Search...
How do you find the average rate of change of
f
(
x
)
=
2
x
2
+
1
on [x,x+h]?
Calculus Derivatives Average Rate of Change Over an Interval
1 Answer
Steve M
Feb 28, 2017
4
x
+
2
h
Step-by-step explanation:
The average rate of change of a continuous function,
f
(
x
)
, on a closed interval
[
a
,
b
]
is given by
f
(
b
)
−
f
(
a
)
b
−
a
So the average rate of change of the function
f
(
x
)
=
2
x
2
+
1
on
[
x
,
x
+
h
]
is:
A
r
o
c
=
f
(
x
+
h
)
−
f
(
x
)
(
x
+
h
)
−
(
x
)
=
f
(
x
+
h
)
−
f
(
x
)
h
...
.
.
[
1
]
=
2
(
x
+
h
)
2
+
1
−
(
2
x
2
+
1
)
h
=
2
(
x
2
+
2
x
h
+
h
2
)
+
1
−
2
x
2
−
1
h
=
2
x
2
+
4
x
h
+
2
h
2
−
2
x
2
h
=
4
x
h
+
2
h
2
h
=
4
x
+
2
h
Which is the required answer.
Additional Notes:
Note that this question is steered towards deriving the derivative
f
'
(
x
)
from first principles, as the definition of the derivative is:
f
'
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
This is the function we had in [1], so as we take the limit as
h
→
0
we get the derivative
f
'
(
x
)
for any
x
, This:
f
'
(
x
)
=
h
→
0
4
x
+
2
h
=
4
x
this is a example