21.3k views
5 votes
Differenciate x^6 with respect to 1/√x

1 Answer

4 votes

DIFFERENTIATION \\ \\ \\ Let \: u \: = \: {x}^(6) \: \: \: and \: v = (1)/( √(x) ) \\ \\ Then \: , \: (du)/(dx) \: = \: 6 {x}^(5) \\ \\ and \: \: \: \: \: \: (dv)/(dx) \: \: = \: ( - 1)/(2x √(x) ) \\ \\ \\ Therefore \: , \\ \\ \\ (du)/(dv) \: = \: ( (du)/(dx) )/( (dv)/(dx) ) \: = \: \frac{6 {x}^(5) }{ ( - 1)/(2x √(x) ) } \\ \\ (du)/(dv) \: = \: ( (du)/(dx) )/( (dv)/(dx) ) \: = - 12 {x}^{ (13)/(2) } \\ \\ \\ (du)/(dv) \: = - 12 {x}^{ (13)/(2) } \: \: \: \: \: \: \: \: Ans.
User Mohammed Wazeem
by
7.3k points