179k views
4 votes
Complete the steps of the derivation of the quadratic formula. Step 2: Step 3: Step 4: Step 5:

Complete the steps of the derivation of the quadratic formula. Step 2: Step 3: Step-example-1

2 Answers

5 votes
Step 1
(x+b/2a)^2-[(b²-4ac)/4a^2]=0
Step 2
(x+b/2a)^2=(b²-4ac)/4a^2
Step 3
getting the square root of both sides we get
x+b/2a=√(b²-4ac)/4a^2
x+b/2a=+/-√(b²-4ac)/2a
Step 4
subtract b/2a from both sides we get:
x+b/2a-b/2a=-b/2a+/-√(b²-4ac)/2a
x=-b/2a+/-√(b²-4ac)/2a
Step 5
Simplifying the above by putting them under the same denominator we get
x=[-b+/-√(b²-4ac)]/2a

User ESR
by
8.4k points
3 votes

Answer:

To complete the derivation of the quadratic equation:

Given:


(x+(b)/(2a))^2-(b^2-4ac)/(4a^2) = 0

Add both sides
(b^2-4ac)/(4a^2) we have;


(x+(b)/(2a))^2=(b^2-4ac)/(4a^2)

Taking square root both sides we have;


(x+(b)/(2a))= \pm \sqrt{(b^2-4ac)/(4a^2)}


x+(b)/(2a) =\pm (√(b^2-4ac))/(2a)

Subtract
(b)/(2a) from both sides we have;


x =-(b)/(2a) \pm (√(b^2-4ac))/(2a)

Therefore, complete derivation for the quadratic equation is:

Step 1.


(x+(b)/(2a))^2-(b^2-4ac)/(4a^2) = 0

Step 2.


(x+(b)/(2a))^2=(b^2-4ac)/(4a^2)

Step 3.


(x+(b)/(2a))= \pm \sqrt{(b^2-4ac)/(4a^2)}

Step 4.


x+(b)/(2a) =\pm (√(b^2-4ac))/(2a)

Step 5.


x =-(b)/(2a) \pm (√(b^2-4ac))/(2a)

or


x = (-b \pm √(b^2-4ac))/(2a)

User Surpavan
by
8.7k points